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Abstract—Deep convolutional neural networks (CNNs) are
rapidly becoming the dominant approach to computer vision and
a major component of many other pervasive machine learning
tasks, such as speech recognition, natural language processing,
and fraud detection. As a result, accelerators for efficiently
evaluating CNNs are rapidly growing in popularity. The conven-
tional approaches to designing such CNN accelerators is to focus
on creating accelerators to iteratively process the CNN layers.
However, by processing each layer to completion, the accelerator
designs must use off-chip memory to store intermediate data
between layers, because the intermediate data are too large to
fit on chip.

In this work, we observe that a previously unexplored dimen-
sion exists in the design space of CNN accelerators that focuses
on the dataflow across convolutional layers. We find that we are
able to fuse the processing of multiple CNN layers by modifying
the order in which the input data are brought on chip, enabling
caching of intermediate data between the evaluation of adjacent
CNN layers. We demonstrate the effectiveness of our approach
by constructing a fused-layer CNN accelerator for the first five
convolutional layers of the VGGNet-E network and comparing
it to the state-of-the-art accelerator implemented on a Xilinx
Virtex-7 FPGA. We find that, by using 362KB of on-chip storage,
our fused-layer accelerator minimizes off-chip feature map data
transfer, reducing the total transfer by 95%, from 77MB down
to 3.6MB per image.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have revolu-
tionized the accuracy of recognition in computer vision. More
broadly, this is part of a trend—using deep neural networks
with many layers—that has been instrumental to rapid progress
in many diverse fields, including natural language process-
ing, information retrieval, computational biology, and speech
recognition.

Underlying the accuracy improvements of CNNs are mas-
sive increases in computation. With each newly developed net-
work, the accuracy of recognition increases and the number of
computations required to evaluate the network grows. Already,
general-purpose CPUs have become a limiter for modern
CNNs because of the lack of computational parallelism. As
a result, there has been significant interest in developing
and adapting hardware accelerators for CNNs [7] such as
GPUs [3], FPGAs [13], [19], [10], [1], and ASICs [2].

Although the CNN computation is mathematically simple,
the sheer volume of operations precludes a dataflow implemen-
tation even for a single layer. Each convolution layer requires
iterative use of the available compute units. Research into
the design of CNN accelerators has therefore concentrated on

developing a CNN building block that iteratively evaluates the
network. A number of methodologies have been developed for
optimizing the architecture of such CNN accelerator building
blocks, concentrating either on specific constraints [10] or
evaluating the design space of compute units and memory
bandwidth [19].

Traditional implementations of CNNs (both hardware and
software) evaluate the network by following its structure, one
layer at a time. This approach produces a large amount of
intermediate data that are gradually streamed out to memory
as the computation progresses. Upon completing a layer, the
intermediate data are streamed back to the same compute units,
repeating the process until all layers have been evaluated. As
CNNs grow larger, the amount of intermediate data that must
be shuttled between the compute units and memory increases.

We observe that an additional, previously unexplored, di-
mension exists for CNN accelerator architectures that focuses
on the dataflow across convolutional layers. Rather than pro-
cessing each CNN layer to completion before proceeding to
the next layer, it is possible to restructure the computation such
that multiple convolutional layers are computed together as the
input is brought on chip, obviating the need to store or retrieve
the intermediate data from off-chip memory. This accelerator
organization is made possible by the nature of CNNs. That
is, each point in a hidden layer of the network depends on a
well-defined region of the initial input to the network.

In this work, we develop a novel CNN evaluation strategy
that breaks away from the commonly accepted practice. By
modifying the order in which the original input data are
brought on chip, changing it to a pyramid-shaped multi-layer
sliding window, our architecture enables effective on-chip
caching during CNN evaluation. The caching in turn dras-
tically reduces the off-chip memory bandwidth requirements,
minimizing data movement.

We validate our approach by demonstrating CNN layer fu-
sion on a Xilinx Virtex-7 FPGA. Using analytic modeling and
our FPGA prototype, we demonstrate the ability to restructure
the CNN evaluation such that intermediate data do not need to
be shuffled on and off chip. In our evaluation of the first five
convolutional layers of VGGNet-E, our method requires only
362KB of storage to replace 73MB of off-chip feature map
transfers. Additionally, we created a mathematical model for
reasoning about and searching over the layer fusion design
space and evaluating its tradeoffs. Lastly, we describe and
provide pseudo-code for a high-level synthesis template for
implementing our design.978-1-5090-3508-3/16/$31.00 c© 2016 IEEE
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Fig. 1. Illustration of a convolutional layer.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce CNNs and CNN hardware accelerators.
Section III introduces our new method for fusing multiple
convolutional layers, eliminating off-chip data movement be-
tween them. Section IV describes our architecture and its
implementation using high-level synthesis. Section V explores
the fused-layer tradeoff space and Section VI presents an
FPGA-based evaluation of our designs. Section VII discusses
related work and Section VIII concludes.

II. DESIGNING CNN ACCELERATORS

A convolutional neural network (CNN) performs feature
extraction using a series of convolutional layers, typically
followed by one or more dense (“fully connected”) neural
network layers that perform classification. Figure 1 shows an
example of one convolutional layer. Each layer takes as input
a set of N feature maps (N channels of R × C values), and
convolves it with M sets of N×K×K filters (whose weights
were previously determined through a learning algorithm such
as back propagation). For each of the M sets, the convolution
is performed by sliding the filter across the input feature
map with a stride of S (where a filter moves S locations at
each step). At each location, a filter’s values are multiplied
with the overlapping values of the input feature maps. The
resulting products are summed together, giving one value in
an output feature map. This process is repeated for each of the
M filter sets, with each repetition giving one output feature
map. (Each of the M output feature maps has dimensions
R′ × C ′, where R′ = R

S − K
S + 1 and C ′ = C

S − K
S + 1).

Additionally, one bias value (also determined through back
propagation) is added to each of the M different output
feature maps. Typically, the output feature maps then undergo
a non-linear operation (e.g., ReLU [8]), optionally followed
by a subsampling operation (e.g., pooling). The nonlinear and
subsampling operations are small, working locally on a single
channel of the feature map; these typically consume a very
small percentage of the overall computation.

Convolutional networks comprise many layers, with the
outputs of the preceding layer being used as the input feature
maps of the subsequent layer. Increasing the depth (number of
layers) of a network yield higher recognition accuracy [17].
Because of this, the past few years have shown a marked
increase in the number of layers used in state-of-the art CNNs.
For example, AlexNet [8], the winner of the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [15],

uses five convolutional layers, while VGG [17] (winner of a
portion of ILSVRC 2014) uses up to 17 convolutional layers.
Meanwhile, GoogLeNet [18] (which also won a portion of
the 2014 ILSVRC) uses 20 convolutional layers, using kernels
(K×K) as small as 1×1 to allow an increased network depth
to be computationally feasible.

In this paper, we focus on the convolutional layers (as well
as the subsampling layers that typically surround them), and
not on the final fully connected layers, which perform a dense
neural network operation. Fully connected layers have lower
computational cost than convolutional layers and their data
usage is dominated by the layer’s weights, not by the input
and output feature maps.

A. Hardware Accelerators

The computational dominance of the convolutional layers,
coupled with the need for larger and deeper networks, has
sparked significant interest in the design and optimization
of accelerator structures for these layers [19], [10]. These
techniques construct accelerators consisting of the multipliers
and adders needed to perform the convolution, as well as
the on-chip memory buffers to hold data and filter weights.
The accelerators are used iteratively, performing one layer
of computation at a time. For each layer, input feature maps
and filter weights are brought from off-chip DRAM into local
buffers, the convolutions are performed, and output feature
map data are written into DRAM. The large volume of data
comprising the feature maps stresses the memory system
and can become the bottleneck. This has inspired efforts to
optimize the memory accesses patterns for this layer-by-layer
approach. For example, [10] and [19] use loop transforma-
tions with the goal of balancing resources between arithmetic
structures, on-chip memories, and memory bandwidth.

B. Data Access Patterns

We observe that, although a number of approaches have
focused on effectively managing on-chip memory and off-
chip bandwidth while evaluating a convolutional layer, existing
approaches forgo the possibility of restructuring the compu-
tation across layers to minimize bandwidth usage. Because
prior approaches consider each convolutional layer separately,
they start with the assumption that every layer must bring the
input feature maps from off-chip DRAM and must write the
output feature maps back when the computation finishes. This
transfer of feature map data to and from external memory is
costly in terms of memory bandwidth and energy [10]. As
deep learning algorithms continue to advance, the amount of
feature map data moving between layers grows and represents
an increasingly large amount of the data movement associated
with the whole algorithm. For example, 25% of the overall
data used in the convolutional layers of AlexNet [8] (2012)
were feature map data (the rest being the filter weights); in
VGG [17] (2014) and GoogLeNet [18] (2014), the feature
map data increased to over 50%.

To illustrate this, Figure 2 shows the size (in MB) of the
feature maps (input and output) and the filter weights of each
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Fig. 2. Input, output, and weight sizes for different convolutional layers of
VGGNet-E. This data combines each pooling layer with the prior convolution
layer; for example, layer 4 encompasses one convolutional and one pooling
layer.

of the convolutional layers of the VGGNet-E network [17].1

The height of each bar represents the amount of data that
must be transferred to and from DRAM (feature maps and
weights) when an accelerator iteratively evaluates the layers.
In the early layers, the size of the input and output feature
maps dominates. For example, the first convolutional layer
requires 0.6MB of input and 7KB of weights; it produces
12.3MB of output feature maps. This 12.3MB is then used
as the input of the following layer (along with 144KB of
weights). Performing the evaluation of the network one layer
at a time requires storing the entire 12.3MB to DRAM only to
immediately read back the same data (reordered) as the input
of the following layer, and then repeating this back-and-forth
data shuffling for every subsequent layer.

We see that, as the layers progress, the relative amount
of data transfer allocated to the feature map data decreases.
In the first eight layers, the sum of the inputs and outputs
is much higher than the weights; beyond that, the weights
dominate. (We observe a similar pattern in other common
CNN structures, such as AlexNet [8].) We focus this work
on reducing the amount of DRAM transferred between the
early layers.

In this paper, we demonstrate layer fusion, our technique
to minimize the off-chip data movement between layers by
re-organizing the evaluation process. For example, our results
show that, on an FPGA implementation of the first five con-
volutional layers of VGGNet-E (along with adjacent pooling,
padding, and ReLU layers), we reduce the total data transfer
required from 77MB to 3.6MB (a 95% reduction) at the cost
of only 362KB of extra on-chip storage.

III. FUSED-LAYER CNN ACCELERATORS

This work identifies a key opportunity in restructuring the
CNN evaluation by fusing the computation of adjacent layers,

1In this diagram, we assume that each subsampling (pooling) layer is
merged into its preceding convolutional layer. Because subsampling is a local
operation that reduces the amount of data, this always reduces bandwidth
without any drawback.

largely eliminating the off-chip feature map data transfer. We
develop an evaluation strategy that maximizes data reuse by
forgoing the prevalent assumption that all intermediate feature
maps must be stored in off-chip memory. Our design primarily
targets the early convolutional layers of the networks, whose
data transfers consist predominantly of the feature map data. In
our approach, we fuse two or more convolutional layers into a
single unit. Then, only the input feature maps of the first fused
layer are transferred from DRAM. As these initial feature
maps are read from memory, we compute the intermediate
values of all of the fused layers that depend on the data region
being read; we do not write any intermediate values out to off-
chip memory. Only the output feature maps of the last fused
layer are retained in their entirety. These last output feature
maps are either written to off-chip memory or simply retained
in an on-chip memory (if they are small enough).

A. Overview

The key to the layer fusion technique is exploiting the lo-
cality in a convolution’s dataflow. Each output value computed
in a convolutional layer depends only on a small window of
that layer’s inputs. We leverage this observation by devising
an evaluation strategy where the first fused layer computes its
outputs in the order that they will be needed by the second
fused layer. This allows the data to be passed directly from
one layer to the next, without needing to be transferred off
and back on chip; once the next layer has finished consuming
the intermediate data, they are discarded.

Figure 3 demonstrates the layer fusion process with an
example that fuses two convolutional layers together (which
we will refer to as Layer 1 and Layer 2). Note that, although
the example in the following discussion focuses specifically
on fusing two layers, the general form allows for more than
two to be merged in an analogous way. At the top, we see
the input feature maps, which are the input to Layer 1. These
inputs comprise N different 7 × 7 feature maps. Each of the
two layers convolves its feature maps with 3×3 kernels; Layer
1 has M filters of 3 × 3 × N weights, while Layer 2 has P
filters of 3 × 3 ×M weights.2 In this example, all filters are
applied with stride S = 1, although this is not a constraint of
our layer fusion technique.

Layer 1 operates on a tile of its input feature maps,
consisting of 5×5×N input values (the black dashed outline
labeled “tile 1” and extending “down” through all N maps).
This means that 5 × 5 × N words are brought from off-chip
memory and stored in on-chip buffers. Layer 1 then convolves
all M of its filters (each 3×3×N ) across this tile, producing
the 3 × 3 ×M region illustrated with a black dashed outline
in the intermediate feature maps (and extending downward
through all M feature maps). Then, Layer 2 is able to use
these 3 × 3 × M values to produce 1 × 1 × P outputs (the
black circle and the points extending downward) in the output
feature maps.

2Because we focus on layers with relatively small filter size, we assume
all filter weights are stored on chip.
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Fig. 3. Example of fusing two convolutional layers.

To reason about this process, we start from a single location
in the output and trace backwards to find the region of the input
feature maps that it depends on. If the layers are visualized
spatially, this process creates a computation pyramid across
multiple layers of feature maps.

Once input tile 1 (black outline) is loaded on chip, we
compute the entire pyramid of intermediate values without
transferring any additional feature map data to or from off-
chip memory. When we reach the tip of the pyramid (the end
of the fused layers), only the values in the last output feature
maps are retained.

After finishing the computation of a pyramid, it is not
necessary to load an entire new input tile (pyramid base) to
continue. Instead, when the pyramid’s base only moves by one
space, it is possible to load only one new column of the input
tile (while discarding the left-most column of the old tile). The
green circles in the input feature maps show the new input data
that must be loaded as we move the base by one location. The
new input tile is indicated with a red dashed outline, forming a
new red pyramid. This pyramid is evaluated in the same way,
yielding output pixel 2 (the red point) in the output feature
maps (extending through all P maps).

Critically, some intermediate values (the blue dots) in the
intermediate feature maps are needed for computing both the
black and red outputs. Because their pyramids overlap, a
number of intermediate values are used to compute both sets of
output values. There are two possible approaches to handle this

situation. We can either recompute the values each time they
are needed or cache and reuse the intermediate results while
computing the next pyramid. Recomputing the values obvi-
ously adds extra arithmetic operations, but has the advantage
of simplicity; each pyramid’s internal dataflow is the same.
Caching the intermediate results saves this extra computation,
but requires on-chip buffering and makes the computation for
each pyramid irregular because some pyramids must perform
more computation than others.

B. Exploration Framework

We develop a technique for evaluating the costs and benefits
of the fused-layer approach described in Section III-A. Based
on the pyramid’s dimensions, we evaluate the costs in terms of
the required storage and arithmetic operations, as well as the
benefit in the amount of off-chip data transfer avoided. Given
a set of layers to fuse, we start from the final layer and work
backwards to find the dimensions of the pyramid.

Assume a convolutional stage takes as input N feature
maps and produces M output feature maps. Let the size of
the pyramid at the output of a given layer be D × D × M
(by construction, if this is the final layer of a pyramid, then
D×D = 1×1, a single value over each of the M output feature
maps). We compute the pyramid size at this layer’s input as
D′×D′×N , where we have M convolutional filters, each of
size K×K×N , applied with stride S, and D′ = SD+K−S.

If the layer performs pooling and not convolution, we use
the same equation, but set K ×K to the size of the pooling
window, S to its stride, and N = M . (Because the pooling
operation is performed localized over small tiles, we always
fuse the pooling layer into the previous convolutional layer,
as it saves bandwidth at virtually no cost.)

Following this procedure, we can analyze the effect of
fusing two or more layers by starting from the output and
working backwards to calculate the dimensions of the pyramid
at each level (i.e., the values at each level upon which the final
outputs depend). Based on this knowledge, we can evaluate
the relative costs of recomputing the shared data points versus
adding extra buffers to locally store and reuse them in terms of
the added computations or memory they require (respectively).

We can determine the cost of recomputation simply by
examining two consecutive pyramids (e.g., the black and red
pyramids in Figure 3) and examining the locations where they
overlap (e.g., the 6M blue circles, six in each of the M feature
maps). We then count the number of arithmetic operations
required to compute each overlapping point, based on the
dimensions of the convolution that produces it. Summing
these values gives the arithmetic overhead of recomputing
intermediate values for each pyramid.

Similarly, we can compute the cost of the reuse method,
where a pyramid’s intermediate values are stored on chip, in
terms of the extra memory required. As before, we examine the
same intermediate values that are shared by two consecutive
pyramids. Now, rather than counting the operations that would
be required to redundantly compute them as above, we instead
count the amount of buffering they require. If the size of the



pyramid at the output of a given layer is D × D × N , and
this layer convolves the input with a filter of size K × K
with stride S, then the reuse model will require storage of
D× (K−S)×N elements on the right side of the tile (to be
reused by the pyramids on the right) and (K − S)×D ×N
elements at the bottom (to be reused by pyramids in the next
row).

Quantifying the benefits of these methods is straightforward.
For each intermediate feature map within the fused-layer
pyramid, we can count the data transfer saved by avoiding
writing and reading intermediate feature maps to off-chip
memory. For example, by fusing layers 1 and 2 in Figure 3,
we avoid writing and reading back the intermediate feature
map (3× 3×M points) for each CNN evaluation.

C. Recomputing vs. Storing

Based on the model above, we can evaluate the relative
merit of the reuse and recompute models: is it better to store
intermediate results or to recompute them? At first glance, it
may appear that these methods are roughly equivalent, where
the intermediate data can be recomputed or stored. However,
it’s important to remember that computing each of these values
requires many operations, and that each intermediate point is
used multiple times in the next layer.

For example, in Figure 3, the 6M blue values in the
intermediate feature maps can be either reused or recomputed.
Each of these values was computed as a convolution of the
previous feature map and a 3 × 3 × N filter. Therefore,
each of the 6M blue points required 9N multiplications and
additions (including the layer’s bias values), for a total of
6M(9 + 9)N = 108MN arithmetic operations. Furthermore,
these 6M values will be used multiple times, first as the
pyramid’s base moves from left to right, and again as it moves
down to the subsequent rows. (As a reference point, the first
convolutional layer of VGGNet-E has M = 64 and N = 3;
its second layer has M = 64 and N = 64.) Specifically,
for a K × K convolutional kernel applied with stride S,
each point (except those close to the edges) will be used in
(K/S) × (K/S) pyramids. In the reuse model, once a value
is computed and stored, it is reused each of these subsequent
times, while the recomputation method will perform redundant
recomputations for each use.

This example suggests that the recompute method may
be much less efficient than the reuse strategy. To evaluate
this fully, we compare the methods on real-world networks
using the same procedure. Considering the two approaches for
AlexNet, we find that a relatively small amount of storage can
allow reuse to replace a relatively large amount of recomputa-
tion. For example, when fusing the first two layers of AlexNet,
the recompute method would need to perform an extra 678
million multiplications and additions to avoid off-chip transfer,
an 8.6x increase in the overall number of arithmetic operations.
On the other hand, the reuse model only requires 55.86KB of
additional on-chip storage to avoid the same off-chip transfer
without performing additional computation.

As the network depth increases (that is, we consider fusing
more layers), the difference between the two methods grows
more extreme. For example, fusing all 19 convolution and
pooling layers of VGGNet-E [17] would require 470 billion
extra multiplications and additions in the convolutional layers,
a 9.6x increase in the overall arithmetic operation count;
alternatively, storing the intermediate data for reuse requires
only 1.4MB of storage.

We note that in other contexts where the number of compu-
tations is relatively small, the recompute method may become
useful. As one example, recurrent neural networks (used in
natural language processing for language modeling) use small
linear layers across multiple time steps. In examples like this, it
may be preferable to recompute intermediate values rather than
storing them. However, for typical CNNs targeting computer
vision applications, such as the AlexNet and VGG networks
we consider in this work, the costs of the recomputation model
are prohibitive, while the storage costs of the reuse model are
relatively small. Based on this analysis, in the remainder of
this work, we focus solely on the reuse model.

D. Partitioning Networks for Layer Fusion

Although our example (Figure 3) illustrates fusing two
convolutional layers, fusing more layers is analogous. As the
number of fused layers increases, the benefits (reduction of
data transferred to and from DRAM) increase, but so do the
costs (on-chip memory required or redundant computation per-
formed). Thus, there is a tradeoff between the costs incurred
and the benefits. We can consider the case where all layers are
fused into a single pyramid as an extreme: increasing costs by
the largest amount to save the most bandwidth. However, we
can also choose other tradeoff points, decomposing the layers
using more than one pyramid.

Figure 4 illustrates two examples on a four-layer network.3

On the left, all layers are fused into a single pyramid, resulting
in minimum data transfer (only the input data for layer 1
is loaded and the final output values of layer 4 stored to
DRAM). However, the input tile size at layer one and the
intermediate feature maps within the pyramid will require sig-
nificant storage (or recomputation). On the right, we consider
decomposing the layers into two pyramids. This organization
has greater off-chip memory transfer, because layer 3’s output
must be stored to DRAM and then read-back to compute
the pyramid for layer 4. The benefit of this multi-pyramid
approach is that the on-chip storage for the reuse model (or
the amount of recomputation if using the recompute model)
will be reduced, as the input tile and intermediate results are
smaller. In this way, we obtain a space of tradeoffs: at one
extreme, all layers are fused into a single pyramid. At the other
extreme, where each layer is its own pyramid, the system is
evaluating the CNN in the traditional layer-by-layer approach.

Given a CNN, we examine this tradeoff space by exploring
the different possible ways to partition the network. We

3For simplicity, the illustration shows the layers as two-dimensional objects,
omitting the third dimension (e.g., the M, N, and P dimensions in Figure 3).
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consider all possible locations to start and stop pyramids and
evaluate the above model for each set of possibilities. In
Section V-B, we will show the results of an experiment that
explores different options using the reuse method on portions
of the AlexNet and VGGNet-E CNNs.

IV. ACCELERATOR ARCHITECTURE

We evaluate fused-layer CNN accelerators by implementing
a hardware prototype. As explained above, we utilize the
reuse method, where small amounts of intermediate data are
stored (see Section III-C). We use the Vivado HLS (high-
level synthesis) tool that transforms a C++ implementation into
hardware, guided by #pragma annotations in the C++ source
code. Our annotations ensure that the resulting RTL precisely
matches the intended CNN evaluation strategy, orchestrating
all computation and data movement cycle by cycle; we rely
on the HLS tool to automatically handle pipelining of the
arithmetic units and DRAM transfers.

A. Baseline CNN Accelerator

We illustrate the datapath of our baseline CNN accelera-
tor (based on [19]) in Figure 5. The design employs loop
transformations, such as loop reordering, tiling, and unrolling,
to reorder computations and memory accesses, increasing
throughput and reducing data transfer [19].

The pseudo-code outlining the structure of the implemen-
tation is presented in Listing 1. The in, out, and weights
arrays represent on-chip buffers for input, output, and weight
data, respectively. These buffers function as data caches to
reduce off-chip memory access; copying data in or out of
these buffers (performed outside of the listing) is done using
double-buffering to overlap data transfer with computation,
thus requiring provisioning each memory with twice the ca-
pacity. The loops M and N are tiled with factors Tm and Tn

respectively. These tiling factors control the amount and order
in which data must be transferred.
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bufferinput 

buffer

input 
buffer
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Fig. 5. A baseline CNN accelerator. Each dot-product unit takes Tn inputs
and Tn weights and produces one output.

compute<Tm, Tn>(in[Tn][(Tr−1)∗S+K][(Tc−1) ∗ S+K] ,
out[Tm][Tr][Tc],
weights[Tm][Tn][K][K],
Tr, Tc ) :

f o r (m = 0;m < M ;m+=Tm )
f o r (n = 0;n < N ;n+=Tn )

f o r (r = 0; r < Tr; r++)
f o r ( c = 0; c < Tc; c++)
f o r ( i = 0; i < K; i++)
f o r ( j = 0; j < K; j++)
f o r ( tm = 0; tm < Tm; tm++) #UNROLL

i f (n == 0 ) out[m+ tm][r][c] = bias[m+ tm]
f o r ( tn = 0; tn < Tn; tn++) #UNROLL
out[m+ tm][r][c] += weights[m+ tm][n+ tn][i][j]

∗ in[n+ tn][S ∗ r + i][S ∗ c+ j]
i f ( i == K−1 && j == K−1 && out[m+tm][r][c] < 0 )

out[m+ tm][r][c] = 0 / / ReLU

Listing 1. Convolution module pseudo-code. Computes over a tile of
dimensions Tr, Tc, unrolling the inner-most two loops (Tm, Tn) to exploit
hardware parallelism.

The dimensions of the inner-most two loops (Tm and Tn)
are template parameters. In hardware, these loops are fully
unrolled, yielding Tm vector dot-product units, each of width
Tn. An accumulation adder is used after each dot-product
unit, as shown in Figure 5. The overall design uses Tm × Tn

multipliers and adders.
Given a hardware resource budget (e.g., a number of FPGA

DSP slices available for the accelerator), one can find the
optimal Tn and Tm for a given convolutional layer. In [19], a
joint optimization process is proposed to create a design that
can compute all of the convolutional layers in a given CNN.
Given a resource budget, the optimization finds the (Tn, Tm)
that maximizes the aggregate performance of the accelerator.

B. Fused-Layer Implementation

We construct the fused-layer accelerator around the baseline
design described in Section IV-A. For contrast, we first present
the baseline CNN accelerator that uses the compute module
in Listing 2. This accelerator is triggered repeatedly, loading
the input from off-chip memory and storing the output to
off-chip memory for each invocation of compute. Double-
buffering permits this design to operate at high efficiency,
pipelining the loop iterations and overlapping the compute



b a s e l i n e <Tm, Tn>(R,C, Tr, Tc ) :
inH = S ∗ Tr +K − S
inW = S ∗ Tc +K − S
outH = Tr

outW = Tc

f o r (row = 0; row < R; row = row + Tr )
f o r ( col = 0; col < C; col = col + Tc )

l o a d ( in, row, col, inH, inW )
compute<Tm, Tn>(in, out, weights, outH, outW )
s t o r e (out )

Listing 2. Pseudo-code for baseline CNN Accelerator

fused<Tm1, . . . , Tm5 , Tn1, . . . , Tn5, R, C > ( ) :
f o r (row = 0; row < R; row++)

f o r ( col = 0; col < C; col++)
c a l c p a r a m s (row, col )
l o a d ( in1, rowt, colt, inH1, inW1 )
compute<Tm1, Tn1>(in1, out1, weights1, outH1, outW1 )
r e u s e (out1, in2, BL1, BT1, row, col,K2, S2, inH2, inW2 )
compute<Tm2, Tn2>(in2, out2, weights2, outH2, outW2 )
poo l1 (out2, outp1 )
r e u s e (outp1, in3, BL3, BT3, row, col,K3, S3, inH3, inW3 )
compute<Tm3, Tn3>(in3, out3, weights3, outH3, outW3 )
r e u s e (out3, in4, BL4, BT4, row, col,K4, S4, inH4, inW4 )
compute<Tm4, Tn4>(in4, out4, weights4, outH4, outW4 )
poo l2 (out4, outp2 )
r e u s e (outp2, in5, BL5, BT5, row, col,K5, S5, inH5, inW5 )
compute<Tm5, Tn5>(in5, out5, weights5, outH5, outW5 )
s t o r e (out5 )

Listing 3. Pseudo-code for Fused-Layer Accelerator

operation of each tile with the load operation of the subse-
quent tile.

On the other hand, the fused-layer CNN accelerator that we
propose performs computation for multiple layers, eliminating
all off-chip data transfer of intermediate data and writing the
output feature maps only after finishing the computation for all
fused layers. This is illustrated in the pseudo-code of Listing 3,
which instantiates a separate compute module for each
layer being fused. We note that the amount of computation
performed by the reuse-model fused-layer accelerator and the
baseline accelerator are identical; our contribution and the
fundamental difference between the designs is minimizing
bandwidth usage by avoiding unnecessary data transfer on and
off chip between processing the layers.

The calcparams module runs first to determine the R
and C dimensions with which the compute module is called
for each fused layer. Between each compute operation, the
reuse module is invoked to prepare the input by combining
data from the preceding convolution output and the new sliver
of data from the load operation that transfers data from off-
chip memory (see Figure 3). We include pooling layers and
padding layers, needed to correctly perform the CNN compu-
tation. Because pooling and padding are not computationally
intensive, prior work tends to ignore these layers, concentrat-
ing on constructing accelerators for the convolutional layers.
However, when fusing layers, we include these operations for

Load 1   Pool 1Compute 1Pyramid 1

Time

Pyramid 3

Pyramid 2

Compute 3Compute 2

Load 2 Compute 1 Compute 2 Compute 3  Pool 1

Load 3 Compute 1 Compute 2 Compute 3 Compute 4

Compute 4

Compute 4

Compute 5Pool 2

Compute 5Pool 2

  Pool 2 Compute 5

  Pool 1

...

Fig. 6. Pipelining applied to fused-layer CNN accelerator

completeness of the full system. Notably, while the baseline
accelerator accepts M,N,K,R,C as parameters, giving it the
freedom to operate on layers of any dimensions, the fused
accelerator is specialized for a specific CNN and hard-codes
these values to achieve its efficiency benefits.

The calcparams module is configured at design time
with the values of X , Y , Sx, and Sy (pyramid base width,
height, and stride between adjacent pyramids) based on the
algorithm described in Section III-B. Using these values, at
each iteration, the row and col values determine the input data
to transfer from off-chip memory (rowt, colt, inW1, inH1)
and the dimensions of each layer’s computation according to
the following formulas:

rowt =

{
Y + (row − 1)Sy − (K − S), if row > 0

0, if row = 0

colt =

{
X + (col − 1)Sx − (K − S), if col > 0

0, if col = 0

inWn =


X, if n = 1 and col = 0

Sx +K − S, if n = 1 and col > 0

outWn−1, if n > 1

inHn =


Y, if n = 1 and row = 0

Sy +K − S, if n = 1 and row > 0

outHn−1, if n > 1

outWn =
inWn −K

S
+ 1

outHn =
inHn −K

S
+ 1

Finally, we note that the fused accelerator is pipelined to
overlap the computation layers as shown in Figure 6, starting
processing for pyramid two as soon as pyramid one completes
its first stage. To achieve effective use of the FPGA resources
allocated to the accelerator, the pipeline stages comprising the
compute modules must be balanced. This is achieved by
finding an appropriate set of Tm and Tn unroll factors for
all of the layers; larger values increase the parallelism within
the module, enabling the corresponding layer to finish more
quickly. We limit our design space exploration to the plausible
designs by considering the number of FPGA resources (DSPs),
governed by

layers∑
i=1

Tmi · Tni · (DSPadd +DSPmul) ≤ available DSPs

where DSPadd is 2 and DSPmul is 3, based on single-
precision floating point units on the Xilinx Virtex-7 devices.



copy (src, dst,H,W, srcX, srcY, dstX, dstY )
f o r ( ch = o; ch < channel; ch++)

f o r (row = 0; row < H; row++)
f o r ( col = 0; col < W ; col++)

d s t [ ch ] [ dstY + row ] [ dstX + col ] =
s r c [ ch ] [ srcY + row ] [ srcX + col ]

r e u s e (src, dst, BL, BT , row, col,K, S,H,W ) :
i f (row == 0 && col == 0 )

copy (src, dst,H,W, 0, 0, 0, 0 )
e l s e i f (row == 0 )

copy (BL, dst,H,K−S, 0, 0, 0, 0 )
copy (src, dst,H,W−(K−S), 0, 0, 0,K−S )

e l s e i f ( col == 0 )
copy (BT , dst,K−S,W, 0, col, 0, 0 )
copy (src, dst,H−(K−S),W, 0, 0,K−S, 0 )

e l s e
copy (BL, dst,H,K−S, 0, 0, 0, 0 )
copy (BT , dst,K−S,W−(K−S ) , 0, col + (K−S ) , 0,K−S )
copy (src, dst,H−(K−S),W−(K−S), 0, 0,K−S,K−S )

copy (dst, BL, H,K−S, 0,W−(K−S), 0, 0 )
copy (dst, BT ,K−S,W,H−(K−S), 0, 0, col )

Listing 4. Pseudo-code for managing reuse buffers

Within the plausible designs, we perform an exhaustive search,
estimating the cycle count for each layer with

Cyclesi =
Mi

Tm
· Ni

Tn
· outWi · outHi ·K2

We select the option that has the minimal cycle count differ-
ence across all layers, ensuring the best pipeline balance.

C. Managing Fused-Layer Data

The key to the fused-layer strategy for CNN evaluation is in
the management of intermediate data. In our implementation,
this functionality is provided by the intermediate data buffers
and the reuse module that manages them. We present the
implementation of the reuse module in Listing 4. This mod-
ule reads the results of the previous pyramid’s computation
from the reuse buffers and replaces them with the results of
the current pyramid’s computation for use by the subsequent
pyramids.

The (row, col) position determines which reuse buffers are
used. In the common case of operating on the “middle”
pyramid (row > 0 and col > 0), results from both the BL

(buffer left) and BT (buffer top) are used to populate the next
layer’s input. BL data from position (0, 0) of height H and
width K−S are copied to dst at position (0, 0), and BT data
from (col+K−S, 0) of height K−S and width W−(K−S)
are copied to position (K − S, 0). The remaining data are
drawn from the src buffer which holds the current pyramid
computations. In the less common cases (row = 0 or col = 0),
data from one of the reuse buffers (BT or BL) are omitted.
On the first iteration (row = 0 and col = 0), all data are taken
from the src buffer and reuse buffers are not used.

V. EXPLORING LAYER FUSION

To understand how fusing convolutional layers affects the
on-chip storage and off-chip bandwidth requirements of real-
world CNNs, we built a tool to evaluate the technique on CNN
structures and use it to explore the resulting tradeoffs.

A. Exploration Tool

Based on the modeling technique described in Section III-B,
we constructed a tool for exploring the tradeoffs of fused-layer
CNN accelerator designs. To enable the tool to easily evaluate
different CNN networks, we constructed it by extending the
Torch machine learning framework [4], a popular system
for working with deep learning algorithms. Our tool reads
a Torch description of a CNN and analyzes the costs (in
terms of added on-chip memory capacity or added arithmetic
operations) and benefits (off-chip data accesses saved) for all
possible pyramids and combinations of pyramids. The system
is able to quickly enumerate and evaluate all possible design
options; even for the large VGGNet-E network, the entire
design space is explored in just a few minutes on a single
CPU core.

B. Tradeoff Evaluation

We explore the effects of applying layer fusion to real-
world CNN algorithms using the evaluation tool described
in Section V-A. We determine the costs (additional on-chip
storage) and benefits (off-chip communication saved) for all
possible groupings of fused layers.

For a given network, there are a number of ways which
one may choose to fuse layers into distinct groups. Given a
network with ` layers, there are 2`−1 possible ways to fuse
these layers (including the extreme cases where all layers are
fused into one layer, and where no layers are fused). For
example, if a network has three layers, we can choose to
organize the layers in groups of (1, 1, 1), (1, 2), (2, 1), or (3).
Although we typically expect that the best solutions involve
fusing pooling layers with the convolutional layers preceding
them (because pooling is an inexpensive local operation that
reduces the data size), for the purposes of this analysis, we
treat them as independent layers, which may or may not be
merged; this allows the optimization to consider their effects.

For each network, we enumerate all possibilities and com-
pute how much data must be transferred to and from DRAM
and how much on-chip buffering is required. Figure 7 shows
these results for AlexNet and VGG. The AlexNet CNN has
five convolutional layers and three pooling layers; there are
128 possible combinations of different ways to fuse layers.
For VGG, we consider fusing the first five convolutional layers
and two pooling layers, giving 64 possible combinations. Each
point on the graphs represents one possible configuration. The
x-axis value indicates the on-chip storage cost of fusing the
layers—the amount of extra storage required to hold the in-
termediate data between the fused-layers. The y-axis indicates
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Fig. 7. The relationship between off-chip data transfer required and additional
on-chip storage needed for fused-layer CNNs AlexNet and VGGNet-E.

each design’s data transfer requirement per image.4 The best
design points are those closest to the origin, representing an
ideal combination of low bandwidth and storage costs. Most
of the configurations are sub-optimal—they are dominated by
designs that are better on one axis and equal or better on the
other. In both graphs, a solid black line connects the Pareto
optimal designs.

These Pareto optimal points represent the tradeoffs that a
designer may consider. For example, point A in Figure 7(b)
has the lowest on-chip storage cost; it represents a layer-by-
layer design that incurs no layer-fusion costs and transfers
86MB of data. Point C represents another extreme, where
five convolutional layers are fused and only the input and
final output feature maps are transferred. This design transfers
only 3.6MB per image, a 24x reduction in DRAM traffic, but
requires 362KB of on-chip memory for intermediate results.
Other points between these extremes may represent attractive
tradeoffs. For example, point B transfers 25MB of data, but
requires only 118KB of extra on-chip storage.

VI. FPGA EVALUATION

We demonstrate and benchmark our fused-layer CNN ac-
celerators based on the HLS methodology from Section IV.

4Data transfer values can be converted to bandwidth by multiplying by the
target throughput. For example, if an accelerator targets 50 images/second,
and the graph shows an off-chip transfer of 100MB, this would require 5
GB/sec. bandwidth.

We evaluate layer fusion for the early layers of AlexNet and
VGGNet-E, and compare the results to those obtained using
the methodology in [19].

A. Experimental Setup

We construct and evaluate two fused-layer CNN acceler-
ators. First, we target AlexNet and compare it to the non-
fused results presented in [19]. Then, we evaluate how the
layer fusion technique scales to larger CNNs by accelerating
VGGNet-E and comparing the results to a baseline design we
produced following [19]’s methodology.

We use Xilinx Vivado HLS 2015.4.2 to generate designs us-
ing high-level synthesis targeting a Xilinx Virtex-7 XC7V690T
FFG1761-3 FPGA. For ease of comparison with prior work,
we use single-precision floating point for all designs, and
we size our design to match the resources and target clock
frequency of [19] as closely as possible. For each design, we
report the HLS tool’s FPGA resource consumption estimates,
the cycle counts, and the amount of data that must be trans-
ferred to/from DRAM for each image.

Lastly, we remind the reader that in this paper we are
specifically focusing on the convolutional and pooling layers
of CNNs where most of the data to be transferred are input
and output feature maps. These layers, which occur early in
typical CNNs, have relatively small amounts of filter weights;
because of this, the weights easily fit into on-chip storage in
their entirety for these layers.

B. Results and Comparison

We evaluate our fused-layer accelerator strategy on the
AlexNet and VGGNet-E networks.

AlexNet. Based on the analysis in Section V-B, we fuse
AlexNet’s first two convolutional layers; these are the layers
with the largest feature maps, which require most of the feature
map bandwidth. Although we are evaluating our design on a
larger Virtex-7 FPGA than [19], we constrain our exploration
tool to use designs with roughly the same memory and arith-
metic resources. Additionally, we include AlexNet’s nonlinear
layers, which are critical to real-world CNN algorithms: a
rectified linear operation called ReLU (which performs the
function f(x) = max(x, 0) on each output value), a zero-
padding around the inputs, and a 3 × 3 pooling layer (with
stride 2) that keeps the largest value in each 3 × 3 region of
the output. In all, we fuse two convolutional layers, two ReLU
layers, two padding layers, and one pooling layer.

In order to directly compare with [19] we also omit
AlexNet’s normalization layer. This has a very small effect;
normalization represents a tiny portion of the CNN computa-
tion and requires minimal extra FPGA resource utilization. Our
fused-layer accelerators can trivially integrate normalization
into the design; it would appear as a single additional stage
in the Figure 6 timing diagram, without affecting the overall
accelerator throughput.

Table I gives a comparison between our fused-layer accel-
erator and an accelerator derived from [19]. When demon-
strating the differences between these, we strive to avoid any



TABLE I
COMPARISON OF OUR FUSED-LAYER ACCELERATOR FOR THE FIRST TWO

CONVOLUTIONAL LAYERS OF ALEXNET WITH A BASELINE DESIGN
DERIVED FROM [19].

Fused-Layer Baseline

KB transferred/input 688 962
Cycles×103 422 621
BRAMs 1,124 1,046
DSP48E1 2,401 2,240
LUTs 273,367 186,251
FFs 306,990 205,704

unfair advantages for the fused-layer approach. Therefore, we
make several adjustments or improvements to the baseline.
First, [19] provides the design parameters that jointly optimize
over all five AlexNet convolutional layers. Because we only
consider the first two convolutional layers in the fused-layer
accelerator, we repeat [19]’s optimization for just the same
two layers. Second, the results given in [19] do not include
any of the non-linear layers (pooling, ReLU, or padding).
Although these layers contribute very little computation, we
note that the pooling layers greatly reduce the amount of data
that must be transferred off chip. Thus it would be unfair
to compare the bandwidth of our fused-layer design (which
includes pooling) to theirs. Therefore when we calculate
the data transfer requirements of [19] we include pooling,
and account for its cost as only 22 additional BRAMs to
implement this layer. Third, we conservatively assume that
the time taken to perform the nonlinear operations in [19]
can be entirely overlapped with existing processing, without
negatively affecting the pipeline depth or design frequency.
Lastly, we directly compare against the numbers of DSP48E1
slices, LUTs, and flip-flops reported in [19] without accounting
for any additional overhead caused by the added nonlinear
operations. This ensures that the baseline design we compare
with has all of the benefits of the nonlinear layers (reduced
data transfer) without negatively affecting its performance or
FPGA resource consumption.

The values for the fused-layer design in Table I are taken
directly from the HLS implementation based on the methodol-
ogy described in Section IV. Comparing the two designs, we
see that the fused-layer method gives a 28% savings in off-chip
data transfer, even when applied only to two layers. The fused-
layer design exhibits small increases in the number of DSP
slices and BRAMs, and an approximately 50% increase in the
FPGA’s LUTs and FFs used. These additional costs are due
to [19] not including the non-linear layers (padding, pooling,
and ReLU), and an increase in control logic complexity caused
by layer fusion.

VGGNet-E. Table II shows the results of a similar compar-
ison, but for the larger and newer VGGNet-E network [17].
To demonstrate how the performance and cost of the fused-
layer strategy scale as the number of layers increases, we
fuse the first five layers of VGGNet-E. In addition to the
five convolutional layers, this includes two pooling layers, five
padding layers, and five ReLU layers. This design corresponds

TABLE II
COMPARISON OF OUR FUSED-LAYER ACCELERATOR FOR THE FIRST FIVE

CONVOLUTIONAL LAYERS OF VGGNET-E WITH A BASELINE DESIGN
DERIVED FROM [19].

Fused-Layer Baseline

MB transferred/input 3.64 77.14
Cycles×103 11,665 10,951

BRAMs 2,509 2,085
DSP48E1 2,987 2,880

to the point labeled C in Figure 7(b). As before, we construct
our design using Vivado HLS and report the cycle count, off-
chip transfer, and resource usage. For the baseline design,
we again use the optimization approach from [19], jointly
optimizing for the first five convolutional layers. We use the
same conservative assumptions for the costs of the non-linear
layers as for AlexNet.5

The off-chip data transfer for the first five convolutional
layers of VGGNet-E is much higher than for AlexNet. Without
the fused-layer strategy, the baseline design transfers 77MB
of data between the FPGA and DRAM for every image.
The fused-layer accelerator drastically reduces this memory
transfer down to 3.6MB, a 95% decrease. This reduction in
off-chip transfer comes at a cost of an extra 424 BRAMs (an
increase of 20%), and a minor increase in DSP slices (due to
the additional control logic). We use a conservative calculation
for the baseline’s cycle count, which does not account for
the overhead of the first padding layer or the time needed to
initially fill the pipeline at the beginning of each iteration.
Compared with this idealized model, our fused-layer design is
marginally slower, requiring 6.5% more clock cycles.

C. Discussion

Layer fusion can save bandwidth on all architectures. In
this work, we demonstrated the layer fusion strategy with an
FPGA prototype because it allowed us to precisely orchestrate
the cycle-by-cycle data movement and exactly quantify the
layer fusion benefits and costs. However, the layer fusion
technique is generally applicable to all programmable systems
that evaluate CNNs and to ASIC implementations that target
a specific network. For example, our experiments with a
C++ implementation of layer fusion for the first two layers
of AlexNet achieves more than 2x speedup as compared to
the layer-by-layer approach running on a desktop CPU. We
similarly expect GPUs to benefit from layer fusion; however,
current GPU programming abstractions make it challenging to
precisely orchestrate the thread behavior and buffer manage-
ment of layer fusion.

VII. RELATED WORK

Recent works on CNN performance have identified data
transfer as a primary concern to achieve efficient processing

5We do not report the LUT or FF usage for VGGNet-E because these values
are not given in [19], nor can they be estimated based on its models.



and have developed design methodologies for CNN accelera-
tors that minimize off-chip memory accesses [10], [19].

A number of works have targeted reducing the bandwidth
requirements of transferring data into on-chip buffers [10],
[12] and constructing models that maximize computation
while minimizing bandwidth requirements [19]. These works
target minimizing the data transfer incurred for each layer
individually. In [11], a mechanism for fusing a pooling layer
with a preceding convolutional layer is presented. We similarly
fuse the pooling and padding layers, however our main band-
width advantage comes from fusing multiple convolutional
layers. Notably, all prior designs construct a single accelerator
with flexibility to execute any convolutional layer, whereas
our fused-layer strategy gains efficiency by specializing the
processing for different layers.

In [6], [5], [16], systolic implementations were proposed.
[16] also applies parallelism within feature maps to maximize
resource utilization. Unlike our work, these mechanisms don’t
need to handle a large amount of intermediate data that must
be stored in off-chip memory.

Several ASIC implementations of CNN accelerators have
also been proposed [2], [9]. These designs optimize different
modules of neural networks (pooling, convolution, etc.) and
other machine learning algorithms so as to minimize external
data access, and they use loop tiling techniques to increase data
locality. Although the primary goal of our work is to eliminate
the transfer of intermediate data, we also apply similar loop
tiling techniques to reduce the data transferred to/from off-chip
memory for each pyramid’s initial and final layers.

In [14], the authors proposed a generalized convolution
engine that can be used for various computer vision and com-
putational photography algorithms which have convolution-
like data-flow patterns. Similar to our design, this work fuses
multiple arithmetic operations within the convolution engine
to reduce memory storage requirements. However, this work
targets algorithms which perform 1D or 2D convolution, rather
than the 3D convolutions needed for CNNs.

All the approaches mentioned above optimize the convolu-
tion layers, but none of them focus on reducing the off-chip
memory accesses of hidden layer data. We have shown in our
approach that by fusing different layers, we can significantly
reduce the number of off-chip memory access.

VIII. CONCLUSIONS

Deep convolutional neural networks (CNNs) are rapidly
rising in popularity across a wide array of fields, leading
to significant interest in the design of accelerators for them.
The conventional approach to designing CNN accelerators has
been to iteratively process layers to completion, forcing off-
chip storage of the intermediate data. We observed that it
is possible to fuse the processing of adjacent CNN layers
by bringing data on chip using a pyramid-shaped multi-
layer sliding window. The key advantage of the fused-layer
evaluation strategy rests in the ability to cache inter-layer in-
termediate data on chip, thereby minimizing off-chip transfer.

In this work, we detailed the methodology to develop fused-
layer accelerators and demonstrated the effectiveness of our
approach by implementing a fused-layer CNN accelerator on
a Xilinx Virtex-7 FPGA. On the the first five convolutional
layers of the VGGNet-E network, we showed that the fused-
layer accelerator design can reduce data transfer by 95%
compared to the previous state of the art.
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